Logo Medical Science Monitor

Call: +1.631.470.9640
Mon - Fri 10:00 am - 02:00 pm EST

Contact Us

Logo Medical Science Monitor Logo Medical Science Monitor Logo Medical Science Monitor

23 March 2018 : Laboratory Research  

MicroRNA-194 Regulates the Development and Differentiation of Sensory Patches and Statoacoustic Ganglion of Inner Ear by Fgf4

Hui Cao12ABCDEFG, Jianbo Shi1BCF, Jintao Du3BCF, Kaitian Chen1BCF, Chang Dong4BF, Di Jiang5BC, Hongyan Jiang4AFG

DOI: 10.12659/MSM.906277

Med Sci Monit 2018; 24: MOL1712-1723

Abstract

BACKGROUND: MicroRNA 194 is involved in the differentiation of various types of cells, such as adipose derived stem cells, human embryonic stem cells, and bone marrow mesenchymal stem cells. Previously, we found that miR-194 was highly expressed in the inner ear sensory patch and neurons in mice embryos. However, the role of miR-194 in the development of the inner ear and its underlying mechanism have not been elucidated yet.

MATERIAL AND METHODS: The expression level of miR-194 has been altered by using antisense morpholino oligonucleotides (MO) and synthesized miRNAs in zebrafish.

RESULTS: We found that miR-194 was vastly expressed in the inner ear and central nervous system (CNS) in zebrafish. Loss of function of miR-194 could strongly affected the development of zebrafish embryos, including delayed embryonic development, edema of the pericardium, small head, axial deviation, delayed development of inner ear, closer location of two otoliths, delayed fusion of the semicircular canals, and abnormal otolith number in some cases. In addition, the behavior of zebrafish was also adversely affected with impaired balance and biased swimming route. Misexpression of miR-194 could strongly affected the development and differentiation of spiral ganglion neuron (SGN) in inner ear through Fgf4 in vitro. Similar results have also been observed that the overexpression and knockdown of miR-194 strongly disturbed the development and differentiation of the sensory patches and Statoacoustic ganglion (SAG) through Fgf4 in zebrafish in vivo. Our results indicated that miR-194 may regulate the development and differentiation of sensory patches and SAG through Fgf4.

CONCLUSIONS: Our data revealed a vital role of miR-194 in regulating the development and differentiation of the inner ear.

Keywords: Cell Dedifferentiation, Developmental Biology, Ear, Inner, Zebrafish

Add Comment 0 Comments

Editorial

01 April 2024 : Editorial  

Editorial: Forty Years of Waiting for Prevention and Cure of HIV Infection – Ongoing Challenges and Hopes for Vaccine Development and Overcoming Antiretroviral Drug Resistance

Dinah V. Parums

DOI: 10.12659/MSM.944600

Med Sci Monit 2024; 30:e944600

0:00

In Press

06 Mar 2024 : Clinical Research  

Comparison of Outcomes between Single-Level and Double-Level Corpectomy in Thoracolumbar Reconstruction: A ...

Med Sci Monit In Press; DOI: 10.12659/MSM.943797  

0:00

21 Mar 2024 : Meta-Analysis  

Economic Evaluation of COVID-19 Screening Tests and Surveillance Strategies in Low-Income, Middle-Income, a...

Med Sci Monit In Press; DOI: 10.12659/MSM.943863  

10 Apr 2024 : Clinical Research  

Predicting Acute Cardiovascular Complications in COVID-19: Insights from a Specialized Cardiac Referral Dep...

Med Sci Monit In Press; DOI: 10.12659/MSM.942612  

06 Mar 2024 : Clinical Research  

Enhanced Surgical Outcomes of Popliteal Cyst Excision: A Retrospective Study Comparing Arthroscopic Debride...

Med Sci Monit In Press; DOI: 10.12659/MSM.941102  

Most Viewed Current Articles

17 Jan 2024 : Review article  

Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron Variant

DOI :10.12659/MSM.942799

Med Sci Monit 2024; 30:e942799

0:00

14 Dec 2022 : Clinical Research  

Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase Levels

DOI :10.12659/MSM.937990

Med Sci Monit 2022; 28:e937990

0:00

16 May 2023 : Clinical Research  

Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...

DOI :10.12659/MSM.940387

Med Sci Monit 2023; 29:e940387

0:00

01 Jan 2022 : Editorial  

Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Pa...

DOI :10.12659/MSM.935952

Med Sci Monit 2022; 28:e935952

0:00

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor eISSN: 1643-3750
Medical Science Monitor eISSN: 1643-3750