Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

01 February 2005

Intensity-dependent effects of microwave electromagnetic fields on acetylcholinesterase activity and protein conformation in frog skeletal muscles

Teodora Vukova, Andrey Atanassov, Radoy Ivanov, Nicolina Radicheva

Med Sci Monit 2005; 11(2): BR50-56 :: ID: 14142

Abstract

Background:This study was conducted to investigate the effects of continuous microwaves (2.45 GHz) of different field intensity on acetylcholinesterase activity and protein conformation in muscle fractions from frog skeletal muscles.Material/Methods:Acetylcholinesterase activity in samples from muscle homogenate fractions exposed for 30 min to microwaves of low (10 mW/cm[sup]2[/sup]) or high (20 mW/cm[sup]2[/sup]) intensity at almost constant temperature (1.8°–2.0°C) was measured by spectrophotometry for three consecutive days after irradiation and compared with the activity in a sham-exposed fraction. Infrared spectroscopy (between 1400 cm[sup]–1[/sup]–1800 cm[sup]–1[/sup]) was performed on the lyophilised fractions using Bruker IFS 113 v.Results:A significant decrease in enzyme activity on the day of exposure (by 8.4% and 13.6% at high and low field intensity, respectively) was observed. Forty-eight hours later the decrease in enzyme activity in samples exposed to both high- and low-intensity microwaves was less than that in sham-exposed samples. Infrared spectroscopy data showed the Amide I band to be negligibly affected and the absorption maximum in the Amide II band to be significantly shifted from 1540 cm[sup]–1[/sup] (sham-exposed) to 1559 cm[sup]–1[/sup] (exposed) after irradiation.Conclusions:Exposure to microwaves results in non-thermal, intensity-dependent, prolonged modification of acetylcholinesterase activity in frog skeletal muscles traced up to 48 hrs after exposure. Infrared spectroscopy data argue for induced conformational changes in the secondary structure of muscle proteins: increased content of β-structures, random coils, and amorphous structures, which were more expressed at low field intensity.

Keywords: Acetylcholinesterase - chemistry, Muscle, Skeletal - radiation effects, Protein Conformation - radiation effects, Acetylcholinesterase - metabolism, Electromagnetic Fields, Microwaves, Muscle, Skeletal - radiation effects, Protein Conformation - radiation effects, Ranidae, Spectroscopy, Fourier Transform Infrared

0 Comments

Most Viewed Current Articles

13 Apr 2020 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

11 May 2020 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

10 Aug 2020 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416