Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

22 December 2005

Lysophosphatidylcholine and secretory phospholipase A2 in vascular disease: mediators of endothelial dysfunction and atherosclerosis.

Panagiotis Kougias, Hong Chai, Peter H. Lin, Alan B. Lumsden, Qizhi Yao, Changyi Chen

Med Sci Monit 2006; 12(1): RA5-16 :: ID: 443209

Abstract

Lysophosphatidylcholine (LPC) is the major component of oxidized low density lipoprotein (oxLDL) and it has the ability to initiate or amplify several steps in atherogenesis due to its ability to impair endothelium-dependent vasorelaxation, enhance endothelial proliferation and permeability, stimulate adhesion and activation of lymphocytes, initiate chemotaxis of macrophages, impair migration and proliferation in vascular smooth muscle cells (SMCs), and modify platelet aggregation and coagulation pathways. For many of the LPC-induced effects, protein kinase C-dependent pathways have been implicated. In addition, modulation of ion current activity in the cell membrane, binding to a specific oxLDL receptor or to G-protein coupled receptors, as well as amplification of a highly oxidative state have all been postulated as likely mediating mechanisms. Secretory phopholipase A(2)-II (sPLA(2)-II) is one of the enzymes responsible for LPC production. sPLA(2)-II has been recently recognized as an independent risk factor for coronary artery disease. sPLA(2)-II favors the formation of bioactive lipids, stimulates SMC proliferation, activates macrophages enhancing lipid core formation and cytokine secretion, and binds to proteoglycans in the vessel wall matrix promoting lipid fusion and accumulation. The non-catalytic atherogenic effects of sPLA(2)-II are thought to be related to binding to an M-type receptor. Commonly used medications have been shown to decrease sPLA(2)-II activity generating a legitimate interest in the effects of the sPLA(2)-II pharmacologic antagonism. LPC and sPLA(2)-II are two very important mediators in atherosclerosis. Further research is warranted to clarify the cellular and molecular mechanisms that underlie their actions and to correlate in vitro data with clinical observations.

Keywords: Endothelium, Vascular - physiology, Blood Coagulation - physiology, Atherosclerosis - physiopathology, Group II Phospholipases A2, Lysophosphatidylcholines - metabolism, Muscle, Smooth, Vascular - metabolism, Phospholipases A - metabolism, Phospholipases A2, Signal Transduction - physiology, Vascular Diseases - physiopathology

Comments

Most Viewed Current Articles

13 Apr 2020 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

11 May 2020 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

10 Aug 2020 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416