Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

21 February 2009

The effect of diabetes mellitus on active avoidance learning in rats: the role of nitric oxide

Vural KucukatayAD, Gulay HaciogluB, Gul OzkayaCF, Aysel AgarDEG, Piraye YargicogluD

Med Sci Monit 2009; 15(3): BR88-93 :: ID: 869581

Abstract

Background
Growing data report memory and other cognitive problems among individuals with diabetes mellitus. Nitric oxide may play a key role in many physiological and pathological situations. The aim was to investigate the role of NO in diabetes-induced changes in learning and lipid peroxidation.
Material and Method
Six groups of 10 rats each were formed: control (C), diabetic (D), control+L-arginine (CA), diabetic+L-arginine (DA), control+L-NAME (CN), and diabetic+L-NAME (DN) groups. Experimental diabetes mellitus was induced by injection of streptozotocin (60 mg/kg body weight). 160 mg/kg/day L-arginine or 10 mg/kg/day L-NAME were injected intraperitoneally to the relevant groups for eight weeks. Active avoidance behavior was studied in the middle of the eighth week using an automated shuttle box. Brain and hippocampal nitrite levels were measured by a fluorometric method. TBARS levels were measured fluorometrically using 1,1,3,3-tetramethoxypropane as a standard.
Results
The active avoidance training indicated that diabetes was associated with learning impairment. Administration of L-NAME and L-arginine significantly impaired active avoidance performance compared with the control group. They also decreased glucose level in group DA compared with the diabetic group. Brain nitrite level was significantly different in the diabetic group; hippocampus nitrite level tended to be lower in the L-NAME groups than the diabetic and control groups, although L-arginine increased hippocampal and brain nitrite values in the CA group compared with control groups. Brain and hippocampal TBARS levels were significantly higher in diabetic than in control rats.
Conclusions
Imbalance related to nitric oxide production may contribute to cognitive dysfunction in diabetes mellitus.

Keywords: Nitrites - metabolism, Rats, Nitric Oxide - metabolism, Hippocampus - metabolism, Feeding Behavior, Drinking Behavior, Body Weight, Diabetes Mellitus - psychology, Rats, Wistar, Blood Glucose - metabolism, Avoidance Learning, Thiobarbituric Acid Reactive Substances - metabolism

Comments

Most Viewed Current Articles

31 Dec 1969 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

31 Dec 1969 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

31 Dec 1969 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

31 Dec 1969 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416