Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

25 June 2010

Organ-related cigarette smoke-induced oxidative stress is strain-dependent

Carlos Romualdo Rueff-BarrosoABCDEF, Eduardo Tavares Lima TrajanoBEF, Jackson Nogueira AlvesBEF, Rojane Oliveira PaivaAB, Manuella LanzettiAB, Karla Maria Pereira PiresAB, Frank Silva BezerraADEG, Ricardo Aurino PinhoADEG, Samuel Santos ValencaADEG, Luis Cristovao PortoADEG

Med Sci Monit 2010; 16(7): BR218-226 :: ID: 880923

Abstract

Background: Cigarette smoke (CS) is associated with oxidative stress in several organs because it contains high concentrations of free radicals and reactive oxygen species. Experimental models, using different strains, provide important insights into the genetic basis of diseases. This study sought to identify, in different mouse strains, the organ that is most-susceptible to CS-induced oxidative stress to obtain an optimized experimental animal model of oxidative injury induced by CS.
Material/Methods: Male Swiss, DBA/2, C3H, BALB/c, and C57BL/6 mice were exposed to CS 3 times a day (4 cigarettes per session) for 60 consecutive days. Control groups from the same strains were sham-treated. Protein content, malondialdehyde level, myeloperoxidase activity, and nitrite level were assayed in lung, liver, kidney, and brain from all strains. Catalase and glutathione peroxidase activities were measured. Analyses of data were done by using a 1-way ANOVA with Bonferroni’s post-test (P<.05).
Results: Cigarette smoke exposure resulted in distinct, organ-specific responses among strains. The survival rate of DBA/2 mice was lowest. BALB/c and C57BL/6 strains were more-susceptible to oxidative damage in the lung and liver. C3H and C57BL/6 mice were more-susceptible to oxidative damage in the brain. No renal oxidative damage was seen.
Conclusions: Mouse strains and individual organs display a range of susceptibilities to CS-induced oxidative stress. BALB/c and C57BL/6 strains appear to be the best choices as experimental models for studying CS effects on liver and lung, and C3H and C57BL/6 strains for CS-effects on the brain.

Keywords: Organ Specificity, Mice, Inbred Strains, Lung - pathology, Liver - pathology, Kidney - pathology, Glutathione Peroxidase - metabolism, Catalase - metabolism, Brain - pathology, Oxidative Stress - drug effects, Smoking - adverse effects

Comments

Most Viewed Current Articles

13 Apr 2020 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

11 May 2020 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

10 Aug 2020 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416