Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

26 October 2011

Nordihydroguaiaretic acid (NDGA) inhibits ritonavir-induced endothelial dysfunction in porcine pulmonary arteries

Jian-Ming LüABCDEF, Jacobo NurkoABCDEF, Jun JiangABCD, Sarah M. WeakleyADEF, Peter H. LinADG, Qizhi YaoADG, Changyi ChenABCDEFG

DOI: 10.12659/MSM.882040

Med Sci Monit 2011; 17(11): BR312-318

Abstract

Background: HIV infection and treatment with highly active antiretroviral therapy (HAART) including HIV protease inhibitor ritonavir (RTV) have been associated with endothelial dysfunction and cardiovascular disease including pulmonary arterial hypertension. The objective of this study was to determine if nordihydroguaiaretic acid (NDGA), a natural herbal antioxidant found in the creosote bush Larrea tridentate, can protect vascular tissues against RTV-induced vascular injury.
Material/Methods: Fresh porcine pulmonary artery (PA) rings were treated with a clinically relevant concentration of RTV (15 µmol/L) with or without NDGA for 24 hours, and then subjected to myograph analysis for vasomotor reactivity. Expression of endothelial nitric oxide synthase (eNOS) in both treated PA rings and human pulmonary artery endothelial cells (HPAECs) was analyzed by real-time PCR and immunohistochemistry. Oxidative stress levels were analyzed with the lucigenin-enhanced chemiluminescence and glutathione assay.
Results: In response to bradykinin at 10–10 mol/L, RTV-treated PA rings showed a 39% reduction in endothelium-dependent vasorelaxation compared with the control vessels (P<0.05); when co-cultured with NDGA (1.75 or 3.50 µmol/L), the relaxation increased by 25% and 48%, respectively. RTV also decreased the maximal contraction and endothelium-independent vasorelaxation in RTV-treated vessels, while NDGA improved these vasomotor responses. In addition, treatment of RTV significantly decreased eNOS mRNA levels in both porcine PAs and HPAECs, and reduced eNOS immunoreactivity in porcine PAs, while NDGA significantly inhibited this effect of RTV. Furthermore, NDGA significantly blocked RTV-induced increase of superoxide anion in the PA rings and inhibited RTV-induced decrease of glutathione in HPAECs.
Conclusions: NDGA effectively inhibits the detrimental effects of HIV protease inhibitor RTV on vasomotor functions in porcine PAs. NDGA also blocks RTV-induced decrease of eNOS expression and increase of oxidative stress in both porcine PAs and HPAECs. This study may provide valuable information for the development of effective strategies for the prevention and treatment of HAART-associated cardiovascular complications.

Keywords: Ritonavir - therapeutic use, Real-Time Polymerase Chain Reaction, Peripheral Vascular Diseases - prevention & control, Oxidative Stress - drug effects, Nitric Oxide Synthase Type III - metabolism, Masoprocol - pharmacology, Larrea - chemistry, HIV Protease Inhibitors - therapeutic use, HIV Infections - drug therapy, Endothelium, Vascular - pathology, Electromyography, Antioxidants - pharmacology, Swine, Vasodilation - drug effects

Comments

Most Viewed Current Articles

13 Apr 2020 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

11 May 2020 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

10 Aug 2020 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416