16 September 2015 : Original article
Diminished Resistance to Hyperoxia in Brains of Reproductively Senescent Female CBA/H Mice
Ana ŠarićABCDEF, Sandra SobočanecACDE, Željka Mačak ŠafrankoBCE, Marijana Popović HadžijaBCD, Robert BagarićBCD, Vladimir FarkašBCD, Alfred ŠvarcAG, Tatjana MarottiAG, Tihomir BalogEFGDOI: 10.12659/MSMBR.895356
Med Sci Monit Basic Res 2015; 21:191-199
Abstract
BACKGROUND: We have explored sex differences in ability to maintain redox balance during acute oxidative stress in brains of mice. We aimed to determine if there were differences in oxidative/antioxidative status upon hyperoxia in brains of reproductively senescent CBA/H mice in order to elucidate some of the possible mechanisms of lifespan regulation.
MATERIAL AND METHODS: The brains of 12-month-old male and female CBA/H mice (n=9 per sex and treatment) subjected to 18-h hyperoxia were evaluated for lipid peroxidation (LPO), antioxidative enzyme expression and activity - superoxide dismutase 1 and 2 (Sod-1, Sod-2), catalase (Cat), glutathione peroxidase 1 (Gpx-1), heme-oxygenase 1 (Ho-1), nad NF-E2-related factor 2 (Nrf2), and for 2-deoxy-2-[18F] fluoro-D-glucose (18FDG) uptake.
RESULTS: No increase in LPO was observed after hyperoxia, regardless of sex. Expression of Nrf-2 showed significant downregulation in hyperoxia-treated males (p=0.001), and upregulation in hyperoxia-treated females (p=0.023). Also, in females hyperoxia upregulated Sod-1 (p=0.046), and Ho-1 (p=0.014) genes. SOD1 protein was upregulated in both sexes after hyperoxia (p=0.009 for males and p=0.011 for females). SOD2 protein was upregulated only in females (p=0.008) while CAT (p=0.026) and HO-1 (p=0.042) proteins were increased after hyperoxia only in males. Uptake of 18FDG was decreased after hyperoxia in the back brain of females.
CONCLUSIONS: We found that females at their reproductive senescence are more susceptible to hyperoxia, compared to males. We propose this model of hyperoxia as a useful tool to assess sex differences in adaptive response to acute stress conditions, which may be partially responsible for observed sex differences in longevity of CBA/H mice.
Keywords: Brain - metabolism, Anoxia - metabolism, Catalase - metabolism, disease resistance, Glutathione Peroxidase - metabolism, Lipid Peroxidation, Mice, Inbred CBA, Neuroimaging, Oxidation-Reduction, Oxidative Stress - physiology, Sex Factors, Superoxide Dismutase - metabolism
489 2
Most Viewed Current Articles
05 Jan 2021 : Review article
A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...DOI :10.12659/MSMBR.929207
Med Sci Monit Basic Res 2021; 27:e929207
05 May 2022 : Laboratory Research
Calcitriol Inhibits Proliferation and Potentially Induces Apoptosis in B16-F10 CellsDOI :10.12659/MSMBR.935139
Med Sci Monit Basic Res 2022; 28:e935139
07 Jul 2022 : Laboratory Research
Cytotoxicity, Apoptosis, Migration Inhibition, and Autophagy-Induced by Crude Ricin from Ricinus communis S...DOI :10.12659/MSMBR.936683
Med Sci Monit Basic Res 2022; 28:e936683
09 Jun 2021 : Laboratory Research
Vitamin D Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in A549 Cells by Downregulating Inflammato...DOI :10.12659/MSMBR.931481
Med Sci Monit Basic Res 2021; 27:e931481