Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

16 November 2016 : Original article  

Parathyroid Hormone-Induced Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation and its Repair of Articular Cartilage Injury in Rabbits

Yushu ChenABCDEFG, Yi ChenA, Shujiang ZhangC, Xiufan DuG, Bo BaiADF

DOI: 10.12659/MSMBR.900242

Med Sci Monit Basic Res 2016; 22:132-145


BACKGROUND: We explored the effect of parathyroid hormone (PTH)-induced bone marrow stem cells (BMSCs) complexed with fibrin glue (FG) in the repair of articular cartilage injury in rabbits.

MATERIAL AND METHODS: Forty-eight rabbits randomized into four groups were subjected to articular surgery (cartilage loss). The PTH and non-PTH intervention groups included transplantation with PTH/BMSC/FG xenogeneic and BMSC/FG xenogeneic complexes, respectively, into the injured area. The injured group contained no transplant while the control group comprised rabbits without any articular injury. Samples were monitored for cartilage repair up to three months post-surgery. Immunohistochemistry as well as real-time fluorescent quantitative PCR and Western blot were used to analyze the expression of type II collagen and aggrecan in the repaired tissue.

RESULTS: At 12 weeks post-surgery, the loss of articular cartilage in the PTH group was fully repaired by hyaline tissue. Typical cartilage lacunae and intact subchondral bone were found. The boundary separating the surrounding normal cartilage tissue disappeared. The gross and International Cartilage Repair Society (ICRS) histological ranking of the repaired tissue was significantly higher in the PTH intervention group than in the non-PTH intervention and injury groups (p<0.05) without any significant difference compared to the control group (p>0.05). Type II collagen and aggrecan stained positive and the average optical density, relative mRNA expression and protein-integrated optical density in the PTH group were higher than in non-PTH and injured groups (p<0.05) but not significantly different from the control group (p>0.05).

CONCLUSIONS: PTH/BMSC/FG xenogeneic complexes effectively repaired the loss of cartilage in rabbit knee injury.

Keywords: Cartilage, Articular, Mesenchymal Stem Cell Transplantation, Parathyroid Hormone

Add Comment 0 Comments

923 17

Most Viewed Current Articles

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

05 May 2022 : Laboratory Research  

Calcitriol Inhibits Proliferation and Potentially Induces Apoptosis in B16-F10 Cells

DOI :10.12659/MSMBR.935139

Med Sci Monit Basic Res 2022; 28:e935139

09 Jun 2021 : Laboratory Research  

Vitamin D Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in A549 Cells by Downregulating Inflammato...

DOI :10.12659/MSMBR.931481

Med Sci Monit Basic Res 2021; 27:e931481

07 Jul 2022 : Laboratory Research  

Cytotoxicity, Apoptosis, Migration Inhibition, and Autophagy-Induced by Crude Ricin from Ricinus communis S...

DOI :10.12659/MSMBR.936683

Med Sci Monit Basic Res 2022; 28:e936683

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416