Scimago Lab
powered by Scopus
eISSN: 2325-4416
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST




Staphylococcus Aureus Induces Osteoclastogenesis via the NF-κB Signaling Pathway

Li-Rong Ren, Zhi-hua Wang, Hai Wang, Xiao-Qing He, Mu-Guo Song, Yong-Qing Xu

The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)

Med Sci Monit 2017; 23:4579-4590

DOI: 10.12659/MSM.903371

Available online:

Published: 2017-09-24

BACKGROUND: Osteomyelitis is one of the refractory diseases encountered in orthopedics, while Staphylococcus aureus (S. aureus) is the most common causative organism in osteomyelitis. However, the precise mechanisms underlying the bone loss caused by S. aureus infection have not been well defined. Here, we investigated the effect of S. aureus on osteoclast differentiation and the probable molecular mechanism.
MATERIAL AND METHODS: RAW 264.7 cells were treated for 5 days with live S. aureus, inactivated S. aureus, and S. aureus filtrate. Then, the formation of osteoclast-like cells and resorption pits was observed, and the expression of osteoclast-specific genes (TRAP, MMP-9, cathepsin K, CTR and Atp6v0d2) was detected by real-time PCR. Moreover, key proteins in the signaling pathway associated with osteoclast differentiation were detected with Western blot.
RESULTS: The data showed that live S. aureus, inactivated S. aureus, and S. aureus filtrate induced osteoclast formation, promoted bone resorption, and increased the expression of osteoclast-specific genes in a dose-dependent manner in the absence RANKL. In addition, we found that the S. aureus-induced osteoclastogenesis was related to the degradation of IκB-a, phosphorylation of NF-κB p65, and increased expression of NFATc1. Thus, we used JSH-23 to inhibit NF-κB transcriptional activity. The effect of the S. aureus-induced osteoclastogenesis and the expression of osteoclast-specific genes and NFATc1 were inhibited, which indicated that the NF-κB signaling pathway plays a role in S. aureus-induced osteoclastogenesis.
CONCLUSIONS: This study demonstrated that S. aureus induces osteoclastogenesis through its cell wall compound and secretion of small soluble molecules, and the NF-κB signaling pathway plays a role in this process.

Keywords: NF-kappa B p52 Subunit, Osteoclasts, osteomyelitis, Staphylococcus aureus