Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

21 April 2017 : Original article  

Protective Effect of Tempol Against Hypoxia-Induced Oxidative Stress and Apoptosis in H9c2 Cells

Linlin JingACEG, Qian LiBC, Lei HeBC, Wei SunCF, Zhengping JiaAD, Huiping MaAEFG

DOI: 10.12659/MSMBR.903764

Med Sci Monit Basic Res 2017; 23:159-165


BACKGROUND: Hypoxia-induced oxidant stress and cardiomyocyte apoptosis are considered essential processes in the progression of heart failure. Tempol is a nitroxide compound that scavenges many reactive oxygen species (ROS) and has antioxidant and cardioprotective effects. This study aimed to investigate the protective effect of Tempol against hypoxia-induced oxidative stress and apoptosis in the H9c2 rat cardiomyoblast cell line, in addition to related mechanisms.

MATERIAL AND METHODS: H9c2 cells were pre-treated with Tempol, followed by hypoxia (37°C, 5% CO2, and 95% N2) for 24 h. Cell viability was detected using MTT assay. ROS level was evaluated using DCFH-DA. Lactate dehydrogenase (LDH), creatinine kinase (CK), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were evaluated using the relevant kits. Cell apoptosis was determined by Annexin V/7-AAD double labelling. The expression of apoptosis-related molecules was assessed with RT-PCR analysis and Western blotting.

RESULTS: Tempol protected H9c2 cells against hypoxia-induced injury, with characteristics of increased the cell viability and reduced LDH and CK release. Tempol also reduced oxidant stress by inhibiting ROS generation and lipid peroxidation, as well as enhancing antioxidant enzyme activity. Moreover, Tempol pretreatment upregulated the expression of Bcl-2 and downregulated the expression of Bax and caspase-3, thereby reducing hypoxia-induced apoptosis in H9c2 cells.

CONCLUSIONS: These results indicate that Tempol reduces the hypoxia-induced oxidant stress and apoptosis in H9c2 cells by scavenging free radicals and modulating the expression of apoptosis-related proteins.

Keywords: Cell Hypoxia, Free Radical Scavengers

Add Comment 0 Comments

Most Viewed Current Articles

15 Jun 2022 : Clinical Research  

Evaluation of Apical Leakage After Root Canal Obturation with Glass Ionomer, Resin, and Zinc Oxide Eugenol ...

DOI :10.12659/MSMBR.936675

Med Sci Monit Basic Res 2022; 28:e936675

07 Jul 2022 : Laboratory Research  

Cytotoxicity, Apoptosis, Migration Inhibition, and Autophagy-Induced by Crude Ricin from Ricinus communis S...

DOI :10.12659/MSMBR.936683

Med Sci Monit Basic Res 2022; 28:e936683

01 Jun 2022 : Laboratory Research  

Comparison of Sealing Abilities Among Zinc Oxide Eugenol Root-Canal Filling Cement, Antibacterial Biocerami...

DOI :10.12659/MSMBR.936319

Med Sci Monit Basic Res 2022; 28:e936319

08 Dec 2022 : Original article  

Use of Estimated Glomerular Filtration Rate and Urine Albumin-to-Creatinine Ratio Based on KDIGO 2012 Guide...

DOI :10.12659/MSMBR.938176

Med Sci Monit Basic Res 2022; 28:e938176

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416