H-Index
10
Scimago Lab
powered by Scopus
eISSN: 2325-4416
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

MSMbanner
AmJCaseRep

Annals
ISI-Home

Extrinsic Calcitonin Gene-Related Peptide Inhibits Hyperoxia-Induced Alveolar Epithelial Type II Cells Apoptosis, Oxidative Stress, and Reactive Oxygen Species (ROS) Production by Enhancing Notch 1 and Homocysteine-Induced Endoplasmic Reticulum Protein (HERP) Expression

Yu-xin Bai, Fang Fang, Jia-ling Jiang, Feng Xu

Department of Critical Care, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China (mainland)

Med Sci Monit 2017; 23:5774-5782

DOI: 10.12659/MSM.904549

Available online:

Published: 2017-12-05


BACKGROUND: Lung alveolar epithelial type II cells (AEC II) are the most important stem cells in lung tissues, which are critical for wound repair of bronchopulmonary dysplasia (BPD). This study investigated the effects of calcitonin gene-related peptide (CGRP) on AEC II cells exposed to hyperoxia.
MATERIAL AND METHODS: Neonatal rat AEC II cells were isolated and identified by detecting surfactant protein C (SP-C). Three small interfering RNAs targeting Notch 1 were synthesized and transfected into AEC II. A hyperoxia-exposed AEC II cell injury model was established and was divided into 8 groups. MDA levels and SOD activity were examined using lipid peroxidation assay kits. Apoptosis and reactive oxygen species (ROS) production were evaluated using flow cytometry. Notch 1 mRNA expression was examined using RT-PCR. Homocysteine-induced endoplasmic reticulum protein (HERP) was examined using Western blot analysis.
RESULTS: CGRP treatment significantly enhanced MDA levels and decreased SOD activity compared to hyperoxia-treated AEC II cells (P<0.05). CGRP treatment significantly inhibited hyperoxia-induced AEC II cell apoptosis, and significantly suppressed hyperoxia-induced ROS production compared to hyperoxia-treated AEC II cells (P<0.05) either undergoing g secretase inhibitor or Notch RNA interference. CGRP significantly triggered Notch 1 mRNA expression and significantly enhanced HERP expression compared to hyperoxia-treated AEC II cells (P<0.05) either undergoing g secretase inhibitor or Notch RNA interference.
CONCLUSIONS: In AEC II cells, extrinsic peptide CGRP suppressed hyperoxia-induced apoptosis, oxidative stress, and ROS production, which may be triggered by Notch 1 and HERP signaling pathway.

Keywords: Adenocarcinoma, Bronchiolo-Alveolar, Apoptosis, Calcitonin Gene-Related Peptide, Oxidative Stress



Back