Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

08 December 2017 : Original article  

Effects of Nicotine and Tocotrienol-Rich Fraction Supplementation on Cytoskeletal Structures of Murine Pre-Implantation Embryos

Nurul Kamsani Hamirah12BCDEF, Yuhaniza Shafinie Kamsani123ADEFG, Nor-Ashikin Mohamed Nor Khan123EF, Sharaniza Ab. Rahim12F, Mohd Hamim Rajikin123ADE*

DOI: 10.12659/MSMBR.905447

Med Sci Monit Basic Res 2017; 23:373-379

Abstract

BACKGROUND: Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. The objective of this study was to evaluate the effects of nicotine, which is a source of oxidative stress, and subsequent supplementation with Tocotrienol-rich fraction (TRF) on actin and tubulin of 2- and 8-cell murine embryos.

MATERIAL AND METHODS: Thirty female Balb/C mice were divided into 4 groups: Group 1 received: subcutaneous (sc) injection of 0.9% NaCl; Group 2 received sc injection of 3.0 nicotine mg/kg bw/day; Group 3 received 3.0 sc injection of nicotine mg/kg bw/day +60 mg/kg bw/day TRF; and Group 4 received 60 sc injection of TRF mg/kg bw/day for 7 consecutive days. The animals were superovulated with 5 IU PMSG followed by 5 IU hCG 48 h later. Animals were cohabited with fertile males overnight and euthanized through cervical dislocation at 24 h post coitum. Embryos at the 2- and 8-cell stages were harvested, fixed, and stained to visualize actin and tubulin distributions by using CLSM.

RESULTS: Results showed that at 2-cell stage, actin intensities were significantly reduced in the nicotine group compared to that of the control group (p<0.001). In Group 3, the intensity of actin significantly increased compared to that of the nicotine group (p<0.001). At 8-cell stage, actin intensity of the nicotine group was significantly lower than that of the control group (p<0.001). The intensities of actin in Group 3 were increased compared to that of nicotine treatment alone (p<0.001). The same trend was seen in tubulin at 2- and 8-cell stages. Interestingly, both actin and tubulin structures in the TRF-treated groups were enhanced compared to the control.

CONCLUSIONS: This study suggests that TRF prevents the deleterious effects of nicotine on the cytoskeletal structures of 2- and 8-cell stages of pre-implantation mice embryos in vitro.

Keywords: actin cytoskeleton, Nicotine, Tocotrienols, tubulin

Add Comment 0 Comments

In Press

Clinical Research  

Questionnaire-Based Study of 392 Women in Abbottabad, Pakistan, to Evaluate the Types of Cosmetic Products ...

Med Sci Monit Basic Res In Press; DOI:  

Most Viewed Current Articles

15 Jun 2022 : Clinical Research  

Evaluation of Apical Leakage After Root Canal Obturation with Glass Ionomer, Resin, and Zinc Oxide Eugenol ...

DOI :10.12659/MSMBR.936675

Med Sci Monit Basic Res 2022; 28:e936675

07 Jul 2022 : Laboratory Research  

Cytotoxicity, Apoptosis, Migration Inhibition, and Autophagy-Induced by Crude Ricin from Ricinus communis S...

DOI :10.12659/MSMBR.936683

Med Sci Monit Basic Res 2022; 28:e936683

01 Jun 2022 : Laboratory Research  

Comparison of Sealing Abilities Among Zinc Oxide Eugenol Root-Canal Filling Cement, Antibacterial Biocerami...

DOI :10.12659/MSMBR.936319

Med Sci Monit Basic Res 2022; 28:e936319

17 Jan 2022 : Clinical Research  

Anodal Transcranial Direct Current Stimulation (tDCS) Over the Primary Motor Cortex (M1) Enhances Motor Res...

DOI :10.12659/MSMBR.934180

Med Sci Monit Basic Res 2022; 28:e934180

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416