H-Index
10
Scimago Lab
powered by Scopus
eISSN: 2325-4416
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

MSMbanner
AmJCaseRep

Annals
ISI-Home

MicroRNA-200c Inhibits Epithelial-Mesenchymal Transition by Targeting the BMI-1 Gene Through the Phospho-AKT Pathway in Endometrial Carcinoma Cells In Vitro

Fengling Li, Aihua Liang, Yan Lv, Guohong Liu, Aili Jiang, Peishu Liu

Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)

Med Sci Monit 2017; 23:5139-5149

DOI: 10.12659/MSM.907207

Available online:

Published: 2017-10-28


BACKGROUND: MicroRNA-200c (miR-200c) is a short non-coding RNA that has a role in tumorigenesis and cancer progression. The aims of this study were to investigate the role of miR-200c in cell migration and epithelial-mesenchymal transition (EMT) in endometrial carcinoma cells in vitro.
MATERIAL AND METHODS: Potential direct targets of miR-200c were identified through the TargetScan database. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used study the expression of miR-200c in the endometrial carcinoma cell lines, Ishikawa and JEC, in vitro. Cell migration was studied using transwell assays. Expression of the mesenchymal marker, N-cadherin, the epithelial marker, E-cadherin, the transcription factor, Slug, the BMI-1 protein, AKT, and p-AKT were measured using Western blot. Small interfering RNA (siRNA) was used to silence the BMI-1 gene to study the targeting effect.
RESULTS: Over-expression of miR-200c in Ishikawa and JEC cells resulted in reduced cell migration and proliferation. Western blot showed that overexpression of miR-200c downregulated the expression of the BMI-1 protein, p-AKT, N-cadherin and Slug, and the expression E-cadherin was upregulated; silencing miR-200c reversed these results. Silencing the BMI-1 gene inhibited EMT and suppressed p-AKT in miR-200c-inhibited endometrial carcinoma cells by increasing E-cadherin expression, reducing the expression of N-cadherin and the EMT-associated transcription factor, Slug.
CONCLUSIONS: In endometrial carcinoma cells in vitro, miR-200c inhibited EMT by targeting the BMI-1 gene through the p-AKT pathway.

Keywords: Carcinoma, Endometrioid, Epithelial-mesenchymal transition, Proto-Oncogene Proteins c-akt



Back