Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

29 May 2018 : Clinical Research  

MicroRNA Microarray-Based Identification of Involvement of miR-155 and miR-19a in Development of Oral Lichen Planus (OLP) by Modulating Th1/Th2 Balance via Targeting eNOS and Toll-Like Receptor 2 (TLR2)

Liang Wang1ABCDF, Wei Wu1CDF, Jijun Chen1BCD, Youhua Li1BCF, Ming Xu1CD, Yawei Cai2AEG*

DOI: 10.12659/MSM.907497

Med Sci Monit 2018; 24: CLR3591-3603


BACKGROUND: A wide range of microRNAs (miRNAs) have been shown to play a significant role in disease regulation. The objective of this study was to explore the role of miR-155 and miR-19a in the regulation of oral lichen planus (OLP).

MATERIAL AND METHODS: Microarray assay, real-time PCR, Western blot assay, computational analysis, luciferase assay, ELISA, and immunohistochemistry analysis were carried out to investigate the role of miR-155 and miR-19a in OLP.

RESULTS: According to microarray assay and real-time PCR results, the expression of miR-155 was most significantly decreased among the 16 candidate miRNAs in the OLP group, whereas the expression of miR-19a was most significantly increased. MiR-155 and miR-19a directly targeted endothelial nitric oxide synthase (eNOS) and TLR2, respectively, since only the cells co-transfected with miR-155/wild-type eNOS 3’UTR or cells co-transfected with miR-19a/wild-type TLR2 3’UTR exhibited decreased luciferase activity. In addition, the expression of TLR2 was highly upregulated in OLP, whereas the expression of eNOS was significantly downregulated. A negative correlation was found between miR-19a and TLR2 mRNA, with a coefficient value of –0.40. Similarly, a negative correlation was found between miR-155 and eNOS mRNA, with a coefficient value of –0.54. A lower level of NO, IL-4, IL-5, and IL-10 was observed in OLP, which was also accompanied by a higher level of TNF-α and IFN-γ. Finally, the upregulation in miR-155 directly decreased the expression of eNOS and further inhibited the production of NO. Downregulation of miR-19a directly increased the expression of TLR2. The inhibition of NO production and the enhancement in TLR2 expression synergistically increased the production of TNF-α and IFN-γ, while decreasing the levels of IL-4, IL-5, and IL-10.

CONCLUSIONS: In this study, the peripheral blood mononuclear cells (PBMCs) from subjects with or without OLP were collected and their gene expression profiles were compared. It was found that OLP changed the expression profile of miR-155 and miR-19a, which in turn directly affected the production of eNOS and TLR2, respectively. In addition, by synergistically inducing an imbalance between Th1 and Th2, the simultaneous deregulation of miR-155/eNOS and miR-19a/TLR2 was responsible for an elevated risk of OLP.

Keywords: Nitric Oxide, Nitric Oxide Synthase Type III, Toll-Like Receptor 2


Most Viewed Current Articles

13 Apr 2020 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

11 May 2020 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

10 Aug 2020 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416