01 February 2018 : Laboratory Research
Emodin, A Chinese Herbal Medicine, Inhibits Reoxygenation-Induced Injury in Cultured Human Aortic Endothelial Cells by Regulating the Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) and Endothelial Nitric Oxide Synthase (eNOS) Signaling Pathway
Xiaoling Shou1ABCDEF, Rongfang Zhou1ABD, Liyue Zhu2BCE, Aihua Ren1AEF, Lei Wang1CD, Yan Wang1BEG, Jianmei Zhou1ABC, Xinwen Liu1AD, Bozhong Wang1ADG*DOI: 10.12659/MSM.908237
Med Sci Monit 2018; 24: LBR643-651
Abstract
BACKGROUND: Ischemia-reperfusion injury is associated with vascular dysfunction. The aim of this study was to investigate the role of emodin, a Chinese herbal medicine, in hypoxia-reoxygenation injury in cultured human aortic endothelial cells (HAECs) and its effects on the expression of the peroxisome proliferator-activated receptor-γ (PPAR-γ) and endothelial nitric oxide synthase (eNOS) signaling pathway.
MATERIAL AND METHODS: An in vitro hypoxia-reoxygenation model used cultured human aortic endothelial cells (HAECs). A colorimetric method evaluated the activity of peroxisome proliferator-activated receptor-γ (PPAR-γ). Phosphorylation of PPAR-γ and endothelial nitric oxide synthase (eNOS) were measured by Western blotting. Expression of inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8 were evaluated by enzyme-linked immunosorbent assay (ELISA) and Western blotting. Nitric oxide (NO) production was detected by diaminofluorescein-FM diacetate (DAF-FM DA) fluorescence. Immunoprecipitation was used to evaluate the molecular coupling of heat shock protein (HSP)90 and eNOS.
RESULTS: Hypoxia-reoxygenation injury of HAECs reduced the activity and phosphorylation of PPAR-γ, and eNOS, NO production, and HSP90/eNOS molecular coupling in a time-dependent manner. Hypoxia-reoxygenation increased the levels of inflammatory cytokines TNF-α, IL-6, and IL-8 in a time-dependent manner. Emodin treatment recovered PPAR-γ activity and phosphorylation, eNOS phosphorylation, and HSP90/eNOS coupling in HAECS in a concentration-dependent manner, which was reversed by the PPAR-γ inhibitor GW9662, and the eNOS inhibitor, L-NAME. The recovery of HSP90/eNOS coupling by emodin was impaired by GW9662 treatment.
CONCLUSIONS: An in vitro hypoxia-reoxygenation (ischemia-reperfusion injury) model of induction of endothelial cell inflammatory mediators showed that emodin recovered the PPAR-γ and eNOS pathway activity.
Keywords: Emodin, endothelial cells, PPAR gamma
Most Viewed Current Articles
13 Apr 2020 : Original article
Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...DOI :10.12659/MSMBR.920449
Med Sci Monit Basic Res 2020; 26:e920449
11 May 2020 : Original article
Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...DOI :10.12659/MSMBR.924085
Med Sci Monit Basic Res 2020; 26:e924085
05 Jan 2021 : Review article
A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...DOI :10.12659/MSMBR.929207
Med Sci Monit Basic Res 2021; 27:e929207
10 Aug 2020 : Clinical Research
Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...DOI :10.12659/MSMBR.925264
Med Sci Monit Basic Res 2020; 26:e925264