09 September 2018 : Laboratory Research
Oxymatrine Inhibits Transforming Growth Factor β1 (TGF-β1)-Induced Cardiac Fibroblast-to-Myofibroblast Transformation (FMT) by Mediating the Notch Signaling Pathway In Vitro
Linglu Zhao123ABCDEF, Yini Xu123ABCD, Ling Tao123ABCD, Yu Yang13ACD, Xiangchun Shen134ABCDFG, Ling Li5ABCDG*, Peng Luo134ABCDGDOI: 10.12659/MSM.910142
Med Sci Monit 2018; 24: LBR6280-6288
Abstract
BACKGROUND: Oxymatrine, a component extracted from the traditional Chinese herb Sophora japonica (Sophora flavescens Ait.), has various pharmacological effects, especially on the cardiovascular system. However, its cardiac protection effects and the underlying mechanism are still poorly understood. In the present study, we investigated the inhibitory effect and mechanism of oxymatrine on cardiac fibrosis induced by TGF-β1.
MATERIAL AND METHODS: Cardiac fibroblasts were isolated and purified from neonatal rats. Immunocytochemical staining was used to identify the cells. MTT assay and immunofluorescence staining were used to assess cardiac fibroblasts proliferation and myofibroblasts transformation. Hematoxylin-eosin staining was performed to evaluate morphological changes of cardiac fibroblasts. The secretion of type I and III collagen was assessed by staining with picrosirius red and the hydroxyproline content was determined by colorimetric assay. Cardiac fibroblast migration was examined by scratch assay and DNA content was detected to analyze cell cycle distribution using flow cytometry. Western blot analysis was used to detect the protein expressions of Notch pathway-associated protein in cardiac fibroblasts.
RESULTS: Oxymatrine and Notch signaling pathway inhibitor DAPT could attenuated TGF-β1 induced the capacity of proliferation and migration increased in cardiac fibroblasts, as well as the secretion of collagen and hydroxyproline colorimetric content in medium. TGF-β1 induced the biomarker α-SMA of fibroblast-to-myofibroblast transformation (FMT), which was inhibited by oxymatrine and DAPT. Western blotting confirmed that oxymatrine blocked the activation of Notch induced by TGF-β1.
CONCLUSIONS: Oxymatrine is a potential inhibitor FMT induced by TGF-β1, which is at least in part mediated via inhibition of Notch signaling.
Keywords: Fibroblasts, Receptors, Notch, Transforming Growth Factor beta1
Most Viewed Current Articles
13 Apr 2020 : Original article
Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...DOI :10.12659/MSMBR.920449
Med Sci Monit Basic Res 2020; 26:e920449
11 May 2020 : Original article
Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...DOI :10.12659/MSMBR.924085
Med Sci Monit Basic Res 2020; 26:e924085
05 Jan 2021 : Review article
A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...DOI :10.12659/MSMBR.929207
Med Sci Monit Basic Res 2021; 27:e929207
10 Aug 2020 : Clinical Research
Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...DOI :10.12659/MSMBR.925264
Med Sci Monit Basic Res 2020; 26:e925264