H-Index
10
Scimago Lab
powered by Scopus
eISSN: 2325-4416
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

MSMbanner
AmJCaseRep

Annals
ISI-Home

Xanthoxyletin Inhibits Proliferation of Human Oral Squamous Carcinoma Cells and Induces Apoptosis, Autophagy, and Cell Cycle Arrest by Modulation of the MEK/ERK Signaling Pathway

Qingquan Wen, Kai Luo, Haiyan Huang, Weiguo Liao, Hong Yang

Department of Head and Neck Oncology Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)

Med Sci Monit 2019; 25:8025-8033

DOI: 10.12659/MSM.911697

Available online:

Published: 2019-10-26


BACKGROUND: This study aimed to investigate the effects of xanthoxyletin, a plant-derived coumarin, on human oral squamous cancer cells in vitro and in mouse xenografts in vivo.
MATERIAL AND METHODS: The study included SCC-1 human oral cancer cells and EBTr normal embryonic bovine tracheal epithelial cells, which were treated with 0 µM, 5 µM, 10 µM, and 20 µM of xanthoxyletin for 24 hours. The MTT assay assessed cell viability, and autophagy was detected by electron microscopy. Cell apoptosis was investigated using 4’,6-diamidino-2-phenylindole (DAPI), annexin V, and propidium iodide (PI) fluorescence flow cytometry, which was also used to investigate the cell cycle. Protein expression was measured by Western blot. Mouse xenografts were used for the in vivo evaluation of the effects of xanthoxyletin.
RESULTS: Xanthoxyletin significantly inhibited the proliferation of oral cancer cells (IC₅₀, 10-30 µM) with lower cytotoxicity for normal cells. Xanthoxyletin treatment was associated with G2/M arrest of the cell cycle and with increased apoptosis and autophagy of SCC-1 cells. Apoptosis and autophagy induced by xanthoxyletin were also associated with changes in expression of the apoptosis-associated proteins, Bax and Bcl-2, and the autophagy-associated proteins, LC3I, LC3II, Beclin 1, p62, and VSp34. Xanthoxyletin inhibited the expression of components of the signaling cascade of the MEK/ERK pathway in the SCC-1 oral cancer cells. The in vivo effects of xanthoxyletin showed inhibition of growth of mouse xenografts.
CONCLUSIONS: Xanthoxyletin inhibited the proliferation of human oral squamous carcinoma cells and induced apoptosis, autophagy, and cell cycle arrest by modulation of the MEK/ERK signaling pathway.

Keywords: Apoptosis, Autophagy, Mouth Neoplasms



Back