Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

28 July 2019 : Animal Research  

Cerebellar Fastigial Nucleus Stimulation in a Chronic Unpredictable Mild Stress Rat Model Reduces Post-Stroke Depression by Suppressing Brain Inflammation via the microRNA-29c/TNFRSF1A Signaling Pathway

Mu Wang1ABCE, Jian Guo2ABDE, Li-na Dong3CEF, Jun-Ping Wang4BEG*

DOI: 10.12659/MSM.911835

Med Sci Monit 2019; 25:5594-5605

Abstract

BACKGROUND: We previously reported that cerebellar fastigial nucleus stimulation reduced post-stroke depression in a rat model by reducing inflammation. This study aimed to investigate the molecular inflammatory signaling pathways associated with cerebellar fastigial nucleus stimulation in an established rat model of post-stroke depression.

MATERIAL AND METHODS: Twenty-four Sprague-Dawley rats included a sham group (N=6), an untreated stroke group (N=6), an untreated post-stroke depression model group (PSD) (N=6), and the model group treated with cerebellar fastigial nucleus stimulation (FNS) (N=6). The rat stroke model involved occlusion of the middle cerebral artery occlusion (MCAO). Post-stroke depression model was established using chronic unpredictable mild stress treatment and was verified using an open field test. Real-time polymerase chain reaction (PCR) and Western blot compared expression levels of microRNA-29c (miR-29c), miR-676, TNFRSF1A, tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in cerebellar tissue. U251 human glioblastoma cells and SH-SY5Y human neuroblastoma cells were studied in vitro.

RESULTS: Cerebellar fastigial nucleus stimulation reduced behaviors associated with depression in the rat model, upregulated the expression of miR-29c, and reduced the expression of TNFRSF1A and inflammatory cytokines, and mildly reduced neuronal apoptosis. Bioinformatics data analysis identified a regulatory relationship between miR-29c and TNFRSF1A. SH-SY5Y cells treated with a miR-29c mimic, or TNFRSF1A short interfering RNA (siRNA), identified a negative regulatory relationship between TNFRSF1A and miR-29c.

CONCLUSIONS: In a rat model, cerebellar fastigial nucleus stimulation reduced the expression of TNFRSF1A by upregulating miR-29c expression, which suppressed the expression of inflammatory cytokines, resulting in reduced severity of post-stroke depression.

Keywords: Depression, MicroRNAs, Apoptosis, Brain Ischemia, Cell Line, Cerebellar Nuclei, Deep Brain Stimulation, Depressive Disorder, Encephalitis, Infarction, Middle Cerebral Artery, Receptors, Tumor Necrosis Factor, Type I, Signal Transduction, Stress, Physiological, Stroke

0 Comments

Most Viewed Current Articles

13 Apr 2020 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

11 May 2020 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

10 Aug 2020 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416