Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

24 January 2019 : Laboratory Research  

Knock-Down of HOXB8 Prohibits Proliferation and Migration of Colorectal Cancer Cells via Wnt/β-Catenin Signaling Pathway

Xiang Li1AB, Han Lin2BD, Feizhao Jiang3CDE, Yongliang Lou1BDE, Ling Ji3CE, Shaotang Li3ABCDE*

DOI: 10.12659/MSM.912218

Med Sci Monit 2019; 25:711-720

Abstract

BACKGROUND: There has been no research on the mechanism of HOXB8 action on colorectal cancer so far. This study was designed to investigate the mechanism of HOXB8 regulating colorectal cancer cell proliferation and invasion in vivo and in vitro.

MATERIAL AND METHODS: HOXB8 shRNA, HOXB8 overexpression, and negative control vector were designed and stably transfected into HCT116 cells. MTT assays were performed to detect cell proliferation. Western blot was utilized to detect HOXB8 expression level in HCT116 stable cells. The invasive and migration abilities were detected by Transwell assay and wound-healing assay.

RESULTS: HOXB8 knockdown inhibited cell proliferation. The invasiveness of HCT116 cells was significantly reduced following HOXB8 depletion compared with that in the shRNA control group, whereby the rates were reduced by 67% in HOXB8 knockdown group. The wound-healing rate of HOXB8 over-expression cells was significantly increased comparing with that of cells in the blank control group (P<0.05). HOXB8 knockdown promotes apoptosis of HCT116 cells. The expression of E-cadherin was restrained in the HOXB8 over-expression group and increased in the HOXB8 knockdown group.

CONCLUSIONS: Knock-down of HOXB8 prohibits the proliferation and migration of colorectal cancer cells via the Wnt/β-catenin signaling pathway and the downregulation of various factors, such as MMP2, c-Myc, CyclinD1,and vimentin. Our data suggested that HOXB8 has great potential to be developed as a novel therapeutic agent for the treatment of human colorectal cancer.

Keywords: Cell Proliferation, Colorectal Neoplasms, Wnt Signaling Pathway, Antigens, CD, Cadherins, Cell Movement, Epithelial-mesenchymal transition, Gene Knockdown Techniques, HCT116 Cells, HEK293 Cells, Homeodomain Proteins, Mice, Inbred BALB C, MicroRNAs, RNA, Small Interfering, beta Catenin

Comments

Most Viewed Current Articles

13 Apr 2020 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

11 May 2020 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

10 Aug 2020 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416