03 June 2019 : Laboratory Research
Matrine Suppresses Reactive Oxygen Species (ROS)-Mediated MKKs/p38-Induced Inflammation in Oxidized Low-Density Lipoprotein (ox-LDL)-Stimulated Macrophages
Junli Zhou1ABD, Wangxia Ma1BCDE, Xincheng Wang1CDE, Hongbo Liu1BCDE, Youliang Miao1ABCD, Juanli Wang1BCF, Peng Du1CD, Yani Chen1ACF, Yong Zhang2ABCDEF*, Zhongwei Liu2CDEGDOI: 10.12659/MSM.917151
Med Sci Monit 2019; 25:4130-4136
Abstract
BACKGROUND: The objective of this study was to study the anti-inflammatory effect and possibly involved molecular mechanisms of matrine on oxidized low-density lipoprotein (ox-LDL)-exposed macrophages.
MATERIAL AND METHODS: Cultured human macrophages (THP-1 cell line) were exposed to ox-LDL at final concentrations of 0, 25, 50, and 100 μg/mL. Several cells were then treated with matrine at serial diluted concentrations. 2,7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA) staining was used to evaluate reactive oxygen species (ROS) production; a colorimetric method was used to determine the cellular antioxidant capacity; production of pro-inflammatory cytokines interleukin (IL)18 and tumor necrosis factor (TNF)α were determined by enzyme-linked immunosorbent assay (ELISA); and immunoblot assay was used to assess the relative protein phosphorylation and expression.
RESULTS: ox-LDL exposure significantly elevated intracellular ROS level and supernatant IL18 and TNFα concentrations, but impaired total antioxidant capacity (TAC) of macrophages. The relative phosphorylations of MAPK kinase kinases (MKK)6, MKK3, and p38 mitogen-activated protein kinases (MAPK) were increased by ox-LDL exposure. The expression levels of IL18 and TNFα were also increased in ox-LDL-treated macrophages. The matrine treatment reduced intracellular ROS level and supernatant IL18 and TNFα concentrations and increased TAC in a concentration- dependent manner. The relative phosphorylations of MKK6, MKK3, and p38 MAPK were reduced after matrine administration. Moreover, the expression levels of IL18 and TNFα were also decreased by matrine treatment, in a concentration-dependent manner.
CONCLUSIONS: ox-LDL increases inflammatory response in macrophages by activating the ROS-mediated MKKs/p38 MAPK-induced inflammatory signaling pathway. Matrine suppresses ox-LDL-induced inflammatory by inhibiting the MKKs/p38 MAPK signaling pathway.
Keywords: Macrophages, Reactive Oxygen Species, Alkaloids, Antioxidants, Apoptosis, China, Interleukin-18, Lipoproteins, LDL, MAP Kinase Kinase 3, MAP Kinase Kinase 6, Phosphorylation, Pilot Projects, Quinolizines, Signal Transduction, THP-1 cells
Most Viewed Current Articles
13 Apr 2020 : Original article
Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...DOI :10.12659/MSMBR.920449
Med Sci Monit Basic Res 2020; 26:e920449
11 May 2020 : Original article
Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...DOI :10.12659/MSMBR.924085
Med Sci Monit Basic Res 2020; 26:e924085
05 Jan 2021 : Review article
A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...DOI :10.12659/MSMBR.929207
Med Sci Monit Basic Res 2021; 27:e929207
10 Aug 2020 : Clinical Research
Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...DOI :10.12659/MSMBR.925264
Med Sci Monit Basic Res 2020; 26:e925264