Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

06 September 2019 : Animal Research  

Effects of Cryopreservation on Microparticles Concentration, Procoagulant Function, Size Distribution, and Morphology

Xinlong Dong12ABCDEF, Mengqi Li12ABC, Qifeng Li12ABC, Yalong Gao12BCD, Li Liu2D, Xin Chen12G, Ziwei Zhou12E, Hongtao Rong12F, Jianning Zhang12ACEG*, Ye Tian12ACEG

DOI: 10.12659/MSM.917962

Med Sci Monit 2019; 25:6675-6690


BACKGROUND: Research on microparticles is rapidly evolving and has extended to the field of many diseases. It is unclear whether microparticles can be stored frozen. In this study, our goal was to verify whether cryopreservation had an effect on the properties of the microparticles.

MATERIAL AND METHODS: We obtained C57BL/6J mouse-derived microparticles by grinding and gradient centrifugation. The specimens were divided into 2 groups: without dimethyl sulfoxide and with dimethyl sulfoxide. The microparticles were then stored at 25°C, 4°C, –20°C, –80°C, and –196°C for 0.5 days, 1 day, 3 days, 5 days, and 7 days. We tested whether the concentration, coagulation function, diameter distribution, and morphology of the microparticles in the 2 groups changed compared to those of a fresh sample.

RESULTS: We discovered that the concentrations of total microparticles, annexin V-positive microparticles, and brain-derived microparticles changed with freezing. The coagulation function, morphology, and size distribution of the microparticles were also affected by cryopreservation. Finally, there was no difference in the effects of cryopreservation on microparticles between the dimethyl sulfoxide group and the dimethyl sulfoxide-free group.

CONCLUSIONS: This study suggests that cryopreservation has diverse effects on microparticles within 1 week and that dimethyl sulfoxide has no protective effect on cryopreserved microparticles. Therefore, microparticles should be used fresh for future studies, and they should not be cryopreserved with or without dimethyl sulfoxide.

Keywords: Annexin A5, Cell-Derived Microparticles, Cryopreservation, Dimethyl Sulfoxide, Coagulants, Mice, Inbred C57BL, Nanoparticles, Particle Size, Temperature

Add Comment 0 Comments

859 11

Most Viewed Current Articles

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

05 May 2022 : Laboratory Research  

Calcitriol Inhibits Proliferation and Potentially Induces Apoptosis in B16-F10 Cells

DOI :10.12659/MSMBR.935139

Med Sci Monit Basic Res 2022; 28:e935139

07 Jul 2022 : Laboratory Research  

Cytotoxicity, Apoptosis, Migration Inhibition, and Autophagy-Induced by Crude Ricin from Ricinus communis S...

DOI :10.12659/MSMBR.936683

Med Sci Monit Basic Res 2022; 28:e936683

09 Jun 2021 : Laboratory Research  

Vitamin D Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in A549 Cells by Downregulating Inflammato...

DOI :10.12659/MSMBR.931481

Med Sci Monit Basic Res 2021; 27:e931481

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416