Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

05 January 2020 : Clinical Research  

Prediction of Prolonged Length of Stay for Stroke Patients on Admission for Inpatient Rehabilitation Based on the International Classification of Functioning, Disability, and Health (ICF) Generic Set: A Study from 50 Centers in China

Xia Zhang1ACDEF, Huaide Qiu2BCDEF, Shouguo Liu2BCDEF, Jianan Li2AFG, Mouwang Zhou1ACDEFG*

DOI: 10.12659/MSM.918811

Med Sci Monit 2020; 26:e918811

Abstract

BACKGROUND: This study aimed to develop a risk prediction model for prolonged length of stay (LOS) in stroke patients in 50 inpatient rehabilitation centers in 20 provinces across mainland China based on the International Classification of Functioning, Disability, and Health (ICF) Generic Set case mix on admission.

MATERIAL AND METHODS: In this cohort study, 383 stroke patients were included from inpatient rehabilitation settings of 50 hospitals across mainland China. Independent predictors of prolonged LOS were identified using multivariate logistic regression analysis. A prediction model was established and then evaluated by receiver operating characteristic (ROC) curve analysis and the Hosmer-Lemeshow test.

RESULTS: Multivariate logistic regression analysis showed that the type of medical insurance and the performance of daily activities (ICF, d230) were associated with prolonged LOS (P<0.05). Age and mobility level measured by the ICF Generic Set demonstrated no significant predictive value. The prediction model showed acceptable discrimination shown by an area under the curve (AUC) of 0.699 (95% CI, 0.646–0.752) and calibration (χ²=11.66; P=0.308).

CONCLUSIONS: The risk prediction model for prolonged LOS in stroke patients in 50 rehabilitation centers in China, based on the ICF Generic Set, showed that the scores for the type of medical insurance and the performance of daily activities (ICF, d230) on admission were independent predictors of prolonged LOS. This prediction model may allow stakeholders to estimate the risk of prolonged LOS on admission quantitatively, facilitate the financial planning, treatment regimens during hospitalization, referral after discharge, and reimbursement.

Keywords: Decision Support Techniques, Length of Stay, Stroke, Activities of Daily Living, Adult, Aged, Aged, 80 and over, Area Under Curve, China, Cohort Studies, Disability Evaluation, Disabled Persons, Forecasting, Inpatients, Insurance, Major Medical, Logistic Models, Male, Middle Aged, Multivariate Analysis, ROC Curve, Risk Factors, stroke rehabilitation

Comments

Most Viewed Current Articles

31 Dec 1969 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

31 Dec 1969 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

31 Dec 1969 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

31 Dec 1969 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416