06 December 2019 : Editorial
Behaviorally-Mediated Entrainment of Whole-Body Metabolic Processes: Conservation and Evolutionary Development of Mitochondrial Respiratory Complexes
George B. Stefano1ABCDEF*, Tobias Esch2ABCDEF, Richard M. Kream1ABCDEFDOI: 10.12659/MSM.920174
Med Sci Monit 2019; 25:9306-9309
Abstract
ABSTRACT: The relaxation response derives its health benefits by reestablishing “normal” equilibria between the sympathetic and parasympathetic branches of the autonomic nervous system. Recent work suggests that this behavioral training provides positive effects on mitochondrial bioenergetics, insulin secretion, and reductions in pro-inflammatory and stress-related pathways. We have previously contended, however, that correlative associations of relaxation training with positive changes in gene expression in selected biological systems are strongly suggestive of adaptive physiological changes, but do not elucidate an underlying, clinically compelling, unified mechanism of action consistent with its purported positive health effects. We surmise that any plausible model of behaviorally-mediated regulatory effects on whole-body metabolic processes must be intrinsically broad-based and multifaceted via integration of differential contributions of functionally interactive peripheral and CNS organ systems. Accordingly, the initiation of multiple cellular protective/anti-bio-senescence processes may have emerged during evolutionary development to ensure the survival of hybrid prokaryotic/eukaryotic progenitor cells, given the evolvement of oxidative metabolism and its associated negative byproducts. As an essential corollary, preservation and adaptation of multifaceted regulatory molecules, notably nitric oxide, paralleled the development of eukaryotic cell types via multifaceted stereo-selective recognition and conformational matching by complex biochemical and molecular enzyme systems. Hence, the relaxation response may be a manifestation of a metabolic corrective process/response, that may now include cognition (“awareness”).
Keywords: Adenosine Triphosphate, Mitochondria, Nervous System, Nitric Oxide, Oxygen Consumption, Relaxation, Cell Respiration, Energy Metabolism, Models, Theoretical
Most Viewed Current Articles
13 Apr 2020 : Original article
Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...DOI :10.12659/MSMBR.920449
Med Sci Monit Basic Res 2020; 26:e920449
11 May 2020 : Original article
Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...DOI :10.12659/MSMBR.924085
Med Sci Monit Basic Res 2020; 26:e924085
05 Jan 2021 : Review article
A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...DOI :10.12659/MSMBR.929207
Med Sci Monit Basic Res 2021; 27:e929207
10 Aug 2020 : Clinical Research
Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...DOI :10.12659/MSMBR.925264
Med Sci Monit Basic Res 2020; 26:e925264