02 March 2020 : Animal Research
Propofol Reduces Epithelial to Mesenchymal Transition, Invasion and Migration of Gastric Cancer Cells through the MicroRNA-195-5p/Snail Axis
Fenghua Liu1ABCDE, Fengyu Qiu1ABDE, Min Fu1DF, Huayong Chen1BCDF, Hui Wang2BCDF*DOI: 10.12659/MSM.920981
Med Sci Monit 2020; 26:e920981
Abstract
BACKGROUND: Gastric cancer (GC) is a life-threating malignancy worldwide. Accumulating studies suggest propofol has anti-tumor functions in addition to the anesthetic effect. This study aimed to figure out the effects of propofol treatment in GC development.
MATERIAL AND METHODS: Human GC SGC-7901 and NCI-N87 cells were treated with different doses of propofol. Then the invasion and migration of GC cells was measured. SGC-7901 cells following 10 μM propofol treatment were applied in the following experiments. MicroRNAs (miRNAs) with differential expression in cells with or without propofol treatment were analyzed. Expression of miR-195-5p, Snail, vimentin and E-cadherin in SGC-7901 cells was measured, and then loss-of-function of miR-195-5p and gain-of-function of Snail were performed. Target relation between miR-195-5p and Snail was confirmed using luciferase assay. Xenograft tumor was induced in nude mice to identify the effect of propofol on GC in vivo.
RESULTS: Propofol reduced epithelial to mesenchymal transition (EMT), invasion and migration of GC cells in a dose-dependent manner. Propofol elevated miR-195-5p expression but reduced Snail expression, and it reduced vimentin but increased E-cadherin expression in SGC-7901 cells. miR-195-5p directly bound to Snail. miR-195-5p inhibition or Snail promotion reversed propofol-inhibited malignant behaviors of SGC-7901 cells. In vitro results were reproduced in in vivo experiments.
CONCLUSIONS: Our study found that propofol could inhibit EMT, invasion, and migration of GC cells by promoting miR-195-5p expression and suppressing Snail expression. This study may provide novel insights in GC treatment.
Keywords: Neoplasm Metastasis, Propofol, Snails, Stomach Neoplasms, Anesthetics, Antineoplastic Agents, Cell Movement, Dose-Response Relationship, Drug, Epithelial-mesenchymal transition, Gene Expression, MicroRNAs, Neoplasm Invasiveness, Snail Family Transcription Factors, Xenograft Model Antitumor Assays
Most Viewed Current Articles
13 Apr 2020 : Original article
Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...DOI :10.12659/MSMBR.920449
Med Sci Monit Basic Res 2020; 26:e920449
11 May 2020 : Original article
Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...DOI :10.12659/MSMBR.924085
Med Sci Monit Basic Res 2020; 26:e924085
05 Jan 2021 : Review article
A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...DOI :10.12659/MSMBR.929207
Med Sci Monit Basic Res 2021; 27:e929207
10 Aug 2020 : Clinical Research
Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...DOI :10.12659/MSMBR.925264
Med Sci Monit Basic Res 2020; 26:e925264