Scimago Lab
powered by Scopus
eISSN: 2325-4416
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST




Green Tea Polyphenols Promote Functional Recovery from Peripheral Nerve Injury in Rats

Jinhong Chen, Rongyuan Yang, Honghan Li, Jie Lao

Department of Orthopedics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China (mainland)

Med Sci Monit 2020; 26:e923806

DOI: 10.12659/MSM.923806

Available online: 2020-06-24

Published: 2020-08-27

BACKGROUND: Peripheral nerve injury (PNI) is a common and progressive disorder with sensory and motor deficits in the peripheral nervous system (PNS). Treatment is difficult, with unfavorable prognosis. Green tea polyphenols (GTPs) exert neuroprotective effects on regeneration of the central nervous system (CNS). However, the effects of GTPs on functional recovery of the PNS have not been fully characterized. Consequently, the present study investigated the effects of GTPs on nerve regeneration of rats with PNI.
MATERIAL AND METHODS: The model of PNI was established in rats by sciatic nerve injury (SNI). Adult male Wistar rats with SNI were randomly divided into a vehicle group and a GTPs group. The compound muscle action potential (CMAP) of rat sciatic nerves (SN) was measured using the CM6240 physiological signal acquisition and processing system. The wet weight of the triceps muscle was determined using an analytical balance. The number of myelinated nerve fibers was counted under an optical microscope. Ultrastructure of the regenerated nerves in SN was observed by transmission electron microscopy. The mRNA and protein expression of nerve growth factor (NGF), growth-associated protein-43 (GAP-43), neurofilament 200 (NF200), and myelin-associated glycoprotein (MAG) in SN stumps were measured by real-time quantification PCR (RT-qPCR) and Western blot, respectively.
RESULTS: In rats with SNI, GTPs relieved the adhesion between nerve anastomosis and surrounding tissues, and significantly increased nerve conduction velocity, wet weight of the triceps muscle, and development and axonal regeneration of myelinated nerve fibers. Moreover, GTPs promoted the mRNA and protein expressions of NGF, GAP-43, NF200, and MAG in SN stumps.
CONCLUSIONS: GTPs promotes nerve regeneration in rats with SNI.

Keywords: Medicine, Chinese Traditional, Nerve Regeneration, Peripheral Nerve Injuries