Scimago Lab
powered by Scopus
eISSN: 2325-4416
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST




Enhancement of Neural Stem Cell Proliferation in Rats with Spinal Cord Injury by a Combination of Repetitive Transcranial Magnetic Stimulation (rTMS) and Human Umbilical Cord Blood Mesenchymal Stem Cells (hUCB-MSCs)

Mengguo Guo, Lixin Wu, Zhenyu Song, Bo Yang

Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)

Med Sci Monit 2020; 26:e924445

DOI: 10.12659/MSM.924445

Available online: 2020-06-19

Published: 2020-08-20

BACKGROUND: This study was designed to explore the combined effects of repetitive transcranial magnetic stimulation (rTMS) and human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) transplantation on neural stem cell proliferation in rats with spinal cord injury (SCI).
MATERIAL AND METHODS: SCI was induced in 90 rats by laminectomy at T10. Fifteen rats each were treated with 0.5 Hz rTMS or 10 Hz rTMS or underwent hUCB-MSC transplantation; 15 each were treated with 0.5 Hz rTMS+hUCB-MSCs or 10 Hz rTMS+hUCB-MSCs; and 15 were untreated (control group). The Basso, Beattie, and Bresnahan (BBB) scores and motor evoked potentials (MEPs) were measured, and all rats underwent biotin dextran-amine (BDA) tracing of the corticospinal tract (CST). The levels of expression of neural stem cell proliferation related proteins, including BrdU, nestin, Tuj1, Ng2+ and GFAP, were measured, and the levels of bFGF and EGF determined by Western blotting.
RESULTS: BBB scores and MEPs were increased after rTMS and hUCB-MSC transplantation, while histologically determined SCI-induced neuron apoptosis was attenuated. The numbers of BDA-positive fibers and Brdu-, nestin- and Tuj1-positive cells were markedly increased and the numbers of Ng2+- and GFAP-positive cells were markedly decreased following treatment with rTMS alone or rTMS plus hUCB-MSC transplantation. The levels of expression of bFGF and EGF were significantly upregulated following rTMS treatment and hUCB-MSC transplantation. Higher performance was observed after combined treatment with rTMS and hUCB-MSC transplantation than after either alone.
CONCLUSIONS: The combination of rTMS treatment and hUCB-MSC transplantation could attenuate SCI-induced neural stem cell apoptosis and motor dysfunction in rats.

Keywords: mesenchymal stromal cells, Spinal Cord Injuries, Transcranial Magnetic Stimulation