Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

26 May 2020 : Editorial  

Potential Immunoregulatory and Antiviral/SARS-CoV-2 Activities of Nitric Oxide

George B. Stefano12ABCDEF*, Tobias Esch3ABCDEF, Richard M. Kream2ABCDEF

DOI: 10.12659/MSM.925679

Med Sci Monit 2020; 26:e925679

Abstract

ABSTRACT: Nitric oxide (NO) represents a key signaling molecule in multiple regulatory pathways underlying vascular, metabolic, immune, and neurological function across animal phyla. Our brief critical discussion is focused on the multiple roles of the NO signaling pathways in the maintenance of basal physiological states of readiness in diverse cell types mediating innate immunological functions and in the facilitation of proinflammatory-mediated adaptive immunological responses associated with viral infections. Prior studies have reinforced the critical importance of constitutive NO signaling pathways in the homeostatic maintenance of the vascular endothelium, and state-dependent changes in innate immunological responses have been associated with a functional override of NO-mediated inhibitory tone. Accordingly, convergent lines of evidence suggest that dysregulation of NO signaling pathways, as well as canonical oxidative effects of inducible NO, may provide a permissive cellular environment for viral entry and replication. In immunologically compromised individuals, functional override and chronic rundown of inhibitory NO signaling systems promote aberrant expression of unregulated proinflammatory pathways resulting in widespread metabolic insufficiencies and structural damage to autonomous cellular and organ structures. We contend that restoration of normative NO tone via combined pharmaceutical, dietary, or complex behavioral interventions may partially reverse deleterious physiological conditions brought about by viral infection linked to unregulated adaptive immune responses.

Keywords: COVID-19, Mitochondria, Nitric Oxide, Antiviral Agents, Oxidation-Reduction, SARS Virus, Signal Transduction

0 Comments

Most Viewed Current Articles

13 Apr 2020 : Original article  

Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest...

DOI :10.12659/MSMBR.920449

Med Sci Monit Basic Res 2020; 26:e920449

11 May 2020 : Original article  

Analysis of Psychological and Sleep Status and Exercise Rehabilitation of Front-Line Clinical Staff in the ...

DOI :10.12659/MSMBR.924085

Med Sci Monit Basic Res 2020; 26:e924085

05 Jan 2021 : Review article  

A Southeast Asian Perspective on the COVID-19 Pandemic: Hemoglobin E (HbE)-Trait Confers Resistance Against...

DOI :10.12659/MSMBR.929207

Med Sci Monit Basic Res 2021; 27:e929207

10 Aug 2020 : Clinical Research  

Effects of Cognitive Task Training on Dynamic Balance and Gait of Patients with Stroke: A Preliminary Rando...

DOI :10.12659/MSMBR.925264

Med Sci Monit Basic Res 2020; 26:e925264

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416