Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

26 January 2018 : Original article  

Biomechanical Stability of a Cross-Rod Connection with a Pedicle Screw System

Tetsutaro Mizuno1ABCDEF*, Toshihiko Sakakibara1ACDE, Takamasa Yoshikawa2AD, Tadashi Inaba2AD, Takaya Kato3D, Yuichi Kasai1ACDE

DOI: 10.12659/MSMBR.906339

Med Sci Monit Basic Res 2018; 24:26-30

Abstract

BACKGROUND: Surgery with pedicle screw instrumentation does not provide sufficient torsional stability. This leads to pseudoarthrosis, loosening of the pedicle screws, and, ultimately, implant failure.

MATERIAL AND METHODS: Functional spinal units from 18 deer were evaluated using a 6-axis material testing machine. As specimen models, we prepared an intact model, a damaged model, a cross-rod model, and a cross-link model. We measured the range of motion (ROM) during bending and rotation tests.

RESULTS: The range of motions of cross-rod model were almost equal to those of cross-link model during the bending test. In the rotation test, the average ranges of motion of the intact, cross-rod, and cross-link models were 2.9°, 3.1°, and 3.9° during right rotation and 2.9°, 3.1°, and 4.1° during left rotation, respectively. The range of motions of the cross-rod model were significantly smaller than those of the cross-link model during the rotation test. The range of motions of the intact model were significantly smaller than those of the cross-link model during the rotation test, but there were no statistically significant differences between the range of motions of intact model and cross-rod model during the rotation test.

CONCLUSIONS: The stability of spinal fixation such as cross-rod model is equal to the fixation using the pedicle screw system during bending tests and equal to that of the intact spine during rotation tests.

Keywords: Animal Experimentation, Spine, Surgical Instruments

Add Comment 0 Comments

Most Viewed Current Articles

15 Jun 2022 : Clinical Research  

Evaluation of Apical Leakage After Root Canal Obturation with Glass Ionomer, Resin, and Zinc Oxide Eugenol ...

DOI :10.12659/MSMBR.936675

Med Sci Monit Basic Res 2022; 28:e936675

07 Jul 2022 : Laboratory Research  

Cytotoxicity, Apoptosis, Migration Inhibition, and Autophagy-Induced by Crude Ricin from Ricinus communis S...

DOI :10.12659/MSMBR.936683

Med Sci Monit Basic Res 2022; 28:e936683

01 Jun 2022 : Laboratory Research  

Comparison of Sealing Abilities Among Zinc Oxide Eugenol Root-Canal Filling Cement, Antibacterial Biocerami...

DOI :10.12659/MSMBR.936319

Med Sci Monit Basic Res 2022; 28:e936319

17 Jan 2022 : Clinical Research  

Anodal Transcranial Direct Current Stimulation (tDCS) Over the Primary Motor Cortex (M1) Enhances Motor Res...

DOI :10.12659/MSMBR.934180

Med Sci Monit Basic Res 2022; 28:e934180

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416