Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

15 February 2018 : Original article

[Retracted: 20 Dec 2018] miR-144 Potentially Suppresses Proliferation and Migration of Ovarian Cancer Cells by Targeting RUNX1

Shichao Han1CE, Jinming Zhu2AFG, Yilei Zhang3BD

DOI: 10.12659/MSMBR.907333

Med Sci Monit Basic Res 2018; 24:40-46

This article is being retracted by request of the author, who mistakenly submitted and processed the publication in the wrong journal.

Abstract

BACKGROUND: Ovarian cancer (OC) is one of the most common malignant diseases of the female reproductive system worldwide. Evidence has shown that microRNAs are involved in the development of ovarian cancer. miR-144, one of these microRNAs, has been found have upregulated expression in various human malignancies. The present study aimed to investigate the role miR-144 in ovarian cancer cell lines and to elucidate the mechanism involved.

MATERIAL AND METHODS: Human ovarian cancer cell lines (SKOV3/OVCAR3) and a normal ovarian cell line (IOSE80) were used to identify the miR-144 expression though qRT-PCR method. SKOV3/OVCAR3 cells were transfected with miR-144 mimics by Lipofectamine, and the proliferation, migration, and invasion ability of these cells were detected by MTT assay, wound healing assay, and Transwell assays, respectively. MMP2 and MMP9 expression were detected at mRNA and protein levels. The results of dual luciferase reporter assay confirmed that miR-144 could down-regulate RUNX1 expression level. Finally, the expression of runt-related transcription factor 1 (RUNX1) was examined using qRT-PCR and Western blot analysis.

RESULTS: Our results demonstrate that the expression level of miR-144 was downregulated in SKOV3/OVCAR3 compared to IOSE80, and we found that miR-144 suppresses the proliferation and migration of ovarian cancer cells. Moreover, RUNX1 was predicted and confirmed to be a target of miRNA-144. Additionally, after 48-h transfection with miR-144 mimics, the expression of RUNX1 was downregulated in OC cells.

CONCLUSIONS: miR-144 mimics can inhibit the proliferation and migration of ovarian cancer cells though regulating the expression of RUNX1.

Keywords: Retracted Publication

Retraction note

Med Sci Monit Basic Res 2018; 24:232-232     https://basic.medscimonit.com/abstract/index/idArt/914478
 
  • Download PDF
  • Order reprints
  • Export Article
  • Related articles
  • Share by email
  • Metrics

1,184 0

Add Comment 0 Comments
Related Articles Metrics Order reprints Share article Share by email

Most Viewed Current Articles

30 Oct 2023 : Original article   5,360

Exploring the Impact of the COVID-19 Pandemic on Academic Burnout Among Nursing College Students in China: ...

DOI :10.12659/MSMBR.940997

Med Sci Monit Basic Res 2023; 29:e940997

22 Mar 2023 : Clinical Research   4,425

A Questionnaire-Based Study to Compare the Psychological Effects of 6 Weeks of Exercise in 123 Chinese Coll...

DOI :10.12659/MSMBR.939096

Med Sci Monit Basic Res 2023; 29:e939096

10 Jan 2023 : Clinical Research   3,451

Prevalence and Associated Factors of Depression Among Frontline Nurses in Wuhan 6 Months After the Outbreak...

DOI :10.12659/MSMBR.938633

Med Sci Monit Basic Res 2023; 29:e938633

06 Nov 2023 : Original article   3,037

Urinary Klotho Excretion: A Key Regulator of Sodium Homeostasis in Chronic Kidney Disease Stage 2-4

DOI :10.12659/MSMBR.942097

Med Sci Monit Basic Res 2023; 29:e942097

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416